rs48/rs48_lib/src/game.rs

251 lines
5.2 KiB
Rust

use std::{error::Error, fmt::Display};
use super::{
controller::{ControllerError, Move},
grid::Grid,
};
pub struct Rules {
size: usize,
spawn_per_turn: usize,
}
impl Rules {
pub fn size(mut self, size: usize) -> Self {
self.size = size;
self
}
pub fn spawn_per_turn(mut self, spawn_per_turn: usize) -> Self {
self.spawn_per_turn = spawn_per_turn;
self
}
}
impl Default for Rules {
fn default() -> Self {
Self {
size: 4,
spawn_per_turn: 1,
}
}
}
#[derive(Debug)]
pub enum GameError {
GridIsFull,
ControllerError(ControllerError),
}
impl From<ControllerError> for GameError {
fn from(error: ControllerError) -> Self {
Self::ControllerError(error)
}
}
impl Display for GameError {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
match self {
Self::GridIsFull => f.write_str("grid is full"),
GameError::ControllerError(err) => err.fmt(f),
}
}
}
impl Error for GameError {}
#[derive(Clone)]
pub struct Game {
board: Grid,
score: usize,
turn_index: usize,
spawn_per_turn: usize,
}
impl Game {
pub fn new(rules: Rules) -> Self {
let Rules {
size,
spawn_per_turn,
} = rules;
Self {
board: Grid::new(size),
score: 0,
turn_index: 0,
spawn_per_turn,
}
}
pub fn get_board(&self) -> &Grid {
&self.board
}
pub fn get_score(&self) -> usize {
self.score
}
pub fn get_turn_index(&self) -> usize {
self.turn_index
}
pub fn turn(&mut self, movement: Move) -> Result<(), GameError> {
let move_score = self.perform_move(movement);
self.score += move_score;
for _ in 0..self.spawn_per_turn {
self.spawn_random()?;
}
self.turn_index += 1;
Ok(())
}
fn spawn_random(&mut self) -> Result<(), GameError> {
let mut potentials = vec![];
for x in 0..self.board.size() {
for y in 0..self.board.size() {
if self.board.get((x, y)).unwrap().is_empty() {
potentials.push((x, y));
}
}
}
let potential_count = potentials.len() as f32;
if potential_count == 0. {
return Err(GameError::GridIsFull.into());
}
let random = rand::random::<f32>() * potential_count;
let index = random.floor() as usize;
let (x, y) = potentials[index];
self.board.set((x, y), Some(1));
Ok(())
}
// TODO: macro peut être ?
pub fn perform_move(&mut self, movement: Move) -> usize {
let mut move_score = 0;
match movement {
Move::LEFT => {
for y in 0..self.board.size() {
for x in 0..self.board.size() {
move_score += self.perform_linear_move((-1, 0), (x, y));
}
}
}
Move::RIGHT => {
for y in 0..self.board.size() {
for x in (0..self.board.size()).rev() {
move_score += self.perform_linear_move((1, 0), (x, y));
}
}
}
Move::UP => {
for x in 0..self.board.size() {
for y in 0..self.board.size() {
move_score += self.perform_linear_move((0, -1), (x, y));
}
}
}
Move::DOWN => {
for x in 0..self.board.size() {
for y in (0..self.board.size()).rev() {
move_score += self.perform_linear_move((0, 1), (x, y));
}
}
}
};
move_score
}
fn perform_linear_move(
&mut self,
direction: (isize, isize),
tile_pos: (usize, usize),
) -> usize {
if self.board.get(tile_pos.clone()).unwrap().is_empty() {
0
} else {
let mut displacement = Displacement::new(&mut self.board, tile_pos, direction);
displacement.move_all();
displacement.pop_score()
}
}
}
pub struct Displacement<'g> {
grid: &'g mut Grid,
position: (usize, usize),
direction: (isize, isize),
score: usize,
}
impl<'g> Displacement<'g> {
pub fn new(grid: &'g mut Grid, position: (usize, usize), direction: (isize, isize)) -> Self {
Self {
grid,
position,
direction,
score: 0,
}
}
pub fn pop_score(self) -> usize {
let Displacement { score, .. } = self;
score
}
pub fn move_all(&mut self) {
loop {
let can_continue = self.move_once();
if !can_continue {
break;
}
}
}
fn move_once(&mut self) -> bool {
let current_pos = self.position.clone();
let current_value = self.grid.get_val(current_pos).unwrap();
if let Some(next_pos) = self.get_next_pos() {
match self.grid.get_val(next_pos) {
None => {
self.grid.move_tile(current_pos, next_pos);
self.set_pos(next_pos);
true
}
Some(value) if value == current_value => {
self.grid.move_tile(current_pos, next_pos);
self.grid.set(next_pos, Some(value * 2));
self.score = value * 2;
false
}
Some(_) => false,
}
} else {
false
}
}
fn get_next_pos(&self) -> Option<(usize, usize)> {
let (current_x, current_y) = self.position.clone();
let (dx, dy) = self.direction.clone();
if would_overflow(current_x, dx, self.grid.size() - 1)
|| would_overflow(current_y, dy, self.grid.size() - 1)
{
None
} else {
let next_x = (current_x as isize) + dx;
let next_y = (current_y as isize) + dy;
Some((next_x as usize, next_y as usize))
}
}
fn set_pos(&mut self, (x, y): (usize, usize)) {
self.position = (x, y);
}
}
/// determine if the given number, added a delta that is either 1 or -1 to it, would overflow a certain maximum value for n
fn would_overflow(number: usize, delta: isize, max: usize) -> bool {
let too_little = number == 0 && delta == -1;
let too_big = number == max && delta == 1;
too_little || too_big
}