gpu tp2 1

This commit is contained in:
JOLIMAITRE Matthieu 2024-03-10 21:52:59 +01:00
parent a9a59ba1ea
commit 643dc6e4fe
7 changed files with 499 additions and 0 deletions

20
gpu/tp2/c/build.sh Executable file
View file

@ -0,0 +1,20 @@
#!/bin/sh
cd "$(dirname "$(realpath "$0")")"
set -e
TARGET="ex1.cu ex2.cu ex3.cu ex4.cu"
if [ $# -gt 0 ]
then TARGET=$1
fi
rm -fr bin
mkdir -p bin
for target in $TARGET
do nvcc src/$target -o bin/${target%.cu}.out
done
for target in $TARGET
do ./bin/${target%.cu}.out
done

72
gpu/tp2/c/src/Matrix.h Normal file
View file

@ -0,0 +1,72 @@
#pragma once
#include <vector>
#include <iostream>
#define CUDA_CHECK(code) { cuda_check((code), __FILE__, __LINE__); }
inline void cuda_check(cudaError_t code, const char *file, int line) {
if(code != cudaSuccess) {
std::cout << file << ':' << line << ": [CUDA ERROR] " << cudaGetErrorString(code) << std::endl;
std::abort();
}
}
namespace linalg {
//
// Generic matrix of type T (int, float, double...)
//
template<typename T>
class Matrix
{
public:
// construct matrix, allocate the 2D pitched memory on the device
__host__ Matrix(int rows, int cols);
// free allocated device memory
__host__ void free();
public:
// copy values from host std::vector to device Matrix
// values must be a vector of size rows x cols
// allocation is already done in the constructor
__host__ void to_cuda(const std::vector<T>& values);
// copy values from device Matrix to host std::vector
// values may not ne resized
__host__ void to_cpu(std::vector<T>& values) const;
public:
// accessor at row i and column j
__device__ const T& operator()(int i, int j) const;
__device__ T& operator()(int i, int j);
public:
__host__ Matrix operator + (const Matrix<T>& other) const;
__host__ Matrix operator - (const Matrix<T>& other) const;
__host__ Matrix operator * (const Matrix<T>& other) const;
__host__ Matrix operator / (const Matrix<T>& other) const;
private:
// apply binary functor f on all pairs of elements
// f must provide the following operator
//
// T operator()(T a, T b)
//
// template<typename BinaryFunctor>
// __host__ Matrix apply(const Matrix<T>& other, BinaryFunctor&& f) const;
public:
__host__ __device__ inline int rows() const {return m_rows;}
__host__ __device__ inline int cols() const {return m_cols;}
private:
T* m_data_ptr; // device pointer
int m_rows;
int m_cols;
size_t m_pitch;
};
} // namespace linalg
#include "Matrix.hpp"

99
gpu/tp2/c/src/Matrix.hpp Normal file
View file

@ -0,0 +1,99 @@
#include "Matrix.h"
namespace linalg {
namespace kernel {
//
// step 10
// CUDA kernel add
//
//
// step 12
// CUDA kernel apply
//
} // namespace kernel
template<typename T>
__host__ Matrix<T>::Matrix(int rows, int cols) :
m_data_ptr(nullptr),
m_rows(rows),
m_cols(cols),
m_pitch(0)
{
// step 07
}
template<typename T>
__host__ void Matrix<T>::free()
{
// step 07
}
template<typename T>
__host__ void Matrix<T>::to_cuda(const std::vector<T>& values)
{
// step 08
}
template<typename T>
__host__ void Matrix<T>::to_cpu(std::vector<T>& values) const
{
// step 08
}
template<typename T>
__device__ const T& Matrix<T>::operator()(int i, int j) const
{
// step 09
}
template<typename T>
__device__ T& Matrix<T>::operator()(int i, int j)
{
// step 09
}
template<typename T>
__host__ Matrix<T> Matrix<T>::operator + (const Matrix<T>& other) const
{
// step 11
}
template<typename T>
__host__ Matrix<T> Matrix<T>::operator - (const Matrix<T>& other) const
{
// step 12
}
template<typename T>
__host__ Matrix<T> Matrix<T>::operator * (const Matrix<T>& other) const
{
// step 12
}
template<typename T>
__host__ Matrix<T> Matrix<T>::operator / (const Matrix<T>& other) const
{
// step 12
}
} // namespace linalg

78
gpu/tp2/c/src/ex1.cu Normal file
View file

@ -0,0 +1,78 @@
#include <iostream>
//
// example: CUDA_CHECK( cudaMalloc(dx, x, N*sizeof(int) );
//
#define CUDA_CHECK(code) { cuda_check((code), __FILE__, __LINE__); }
inline void cuda_check(cudaError_t code, const char *file, int line) {
if(code != cudaSuccess) {
std::cout << file << ':' << line << ": [CUDA ERROR] " << cudaGetErrorString(code) << std::endl;
std::abort();
}
}
//
// step 01
// return the linear index corresponding to the element at row i and column j
// in a matrix of size rows x cols, using row-major storage
//
__device__ int linear_index(int i, int j, int rows, int cols) {
}
//
// step 02
// CUDA kernel add
//
int main()
{
constexpr int rows = 200;
constexpr int cols = 80;
int* x = (int*)malloc(rows*cols*sizeof(int));
int* y = (int*)malloc(rows*cols*sizeof(int));
for(int i = 0; i < rows*cols; ++i) {
x[i] = i;
y[i] = std::pow(-1,i) * i;
}
//
// step 03
//
int* dx;
int* dy;
// 1. allocate on device
// 2. copy from host to device
// 3. launch CUDA kernel
// const dim3 threads_per_bloc{32,32,1};
// 4. copy result from device to host
// 5. free device memory
// checking results
bool ok = true;
for(int i = 0; i < rows*cols; ++i) {
const int expected_result = std::pow(-1,i) * i + i;
if(y[i] != expected_result) {
std::cout << "Failure" << std::endl;
std::cout << "Result at index i="
<< i << ": expected "
<< std::pow(-1,i) * i << '+' << i << '=' << expected_result << ", got " << y[i] << std::endl;
ok = false;
break;
}
}
if(ok) std::cout << "Success" << std::endl;
free(x);
free(y);
return 0;
}

80
gpu/tp2/c/src/ex2.cu Normal file
View file

@ -0,0 +1,80 @@
#include <iostream>
//
// example: CUDA_CHECK( cudaMalloc(dx, x, N*sizeof(int) );
//
#define CUDA_CHECK(code) { cuda_check((code), __FILE__, __LINE__); }
inline void cuda_check(cudaError_t code, const char *file, int line) {
if(code != cudaSuccess) {
std::cout << file << ':' << line << ": [CUDA ERROR] " << cudaGetErrorString(code) << std::endl;
std::abort();
}
}
//
// step 04
// return a pointer to the value at row i and column j from base_address
// with pitch in bytes
//
__device__ inline int* get_ptr(int* base_address, int i, int j, size_t pitch) {
}
//
// step 05
// CUDA kernel add
//
int main()
{
constexpr int rows = 200;
constexpr int cols = 80;
int* x = (int*)malloc(rows*cols*sizeof(int));
int* y = (int*)malloc(rows*cols*sizeof(int));
for(int i = 0; i < rows*cols; ++i) {
x[i] = i;
y[i] = std::pow(-1,i) * i;
}
//
// step 06
//
int* dx;
int* dy;
size_t pitch;
// 1. allocate on device
// 2. copy from host to device
// 3. launch CUDA kernel
// const dim3 threads_per_bloc{32,32,1};
// 4. copy result from device to host
// 5. free device memory
// checking results
bool ok = true;
for(int i = 0; i < rows*cols; ++i) {
const int expected_result = std::pow(-1,i) * i + i;
if(y[i] != expected_result) {
std::cout << "Failure" << std::endl;
std::cout << "Result at index i="
<< i << ": expected "
<< std::pow(-1,i) * i << '+' << i << '=' << expected_result << ", got " << y[i] << std::endl;
ok = false;
break;
}
}
if(ok) std::cout << "Success" << std::endl;
free(x);
free(y);
return 0;
}

148
gpu/tp2/c/src/ex3.cu Normal file
View file

@ -0,0 +1,148 @@
#include "Matrix.h"
int main()
{
{
const int rows = 4;
const int cols = 4;
// instantiate two matrices of integers on the device
linalg::Matrix<int> A(rows, cols);
linalg::Matrix<int> B(rows, cols);
// fill the two matrices
A.to_cuda({ 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15,16});
B.to_cuda({16,15,14,13,12,11,10, 9, 8, 7, 6, 5, 4, 3, 2, 1});
// compute the sum
auto C = A + B;
// transfert the result on the host
std::vector<int> c_res;
C.to_cpu(c_res);
C.free();
// check results
const std::vector<int> c_expected{17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17};
if(c_res != c_expected) {
std::cout << __FILE__ << ":" << __LINE__ << ": Failure (+):" << std::endl;
std::cout << " expected: ";
for(int i : c_expected) std::cout << i << " ";
std::cout << std::endl;
std::cout << " got: ";
for(int i : c_res) std::cout << i << " ";
std::cout << std::endl;
} else {
std::cout << "Success" << std::endl;
}
// compute the difference
auto D = A - B;
// transfert the result on the host
std::vector<int> d_res;
D.to_cpu(d_res);
D.free();
// check results
const std::vector<int> d_expected{-15, -13, -11, -9, -7, -5, -3, -1, 1, 3, 5, 7, 9, 11, 13, 15};
if(d_res != d_expected) {
std::cout << __FILE__ << ":" << __LINE__ << ": Failure (-):" << std::endl;
std::cout << " expected: ";
for(int i : d_expected) std::cout << i << " ";
std::cout << std::endl;
std::cout << " got: ";
for(int i : d_res) std::cout << i << " ";
std::cout << std::endl;
} else {
std::cout << "Success" << std::endl;
}
}
// ------------------------------------------------------------------------
{
const int rows = 89;
const int cols = 128;
linalg::Matrix<float> A(rows, cols);
linalg::Matrix<float> B(rows, cols);
std::vector<float> a_values(rows*cols);
std::vector<float> b_values(rows*cols);
for(int i = 0; i < rows*cols; ++i) {
a_values[i] = 1 + float(i) / 100;
b_values[i] = std::pow(-1, i) * float(i)/(rows*cols) * 100;
}
A.to_cuda(a_values);
B.to_cuda(b_values);
auto C = A + B;
auto D = A - B;
auto E = A * B;
auto F = A / B;
std::vector<float> c_values;
C.to_cpu(c_values);
std::vector<float> d_values;
D.to_cpu(d_values);
std::vector<float> e_values;
E.to_cpu(e_values);
std::vector<float> f_values;
F.to_cpu(f_values);
C.free();
D.free();
E.free();
F.free();
const float epsilon = 0.001;
bool ok = true;
for(int i = 0; i < rows*cols; ++i) {
const float diff = std::abs( c_values[i] - (a_values[i] + b_values[i]) );
if(diff > epsilon) {
std::cout << __FILE__ << ":" << __LINE__ << ": Failure (+):" << std::endl;
std::cout << " expected: " << a_values[i] + b_values[i] << std::endl;
std::cout << " got: " << c_values[i] << std::endl;
ok = false;
break;
}
}
if(ok) std::cout << "Success" << std::endl;
ok = true;
for(int i = 0; i < rows*cols; ++i) {
const float diff = std::abs( d_values[i] - (a_values[i] - b_values[i]) );
if(diff > epsilon) {
std::cout << __FILE__ << ":" << __LINE__ << ": Failure (-):" << std::endl;
std::cout << " expected: " << a_values[i] - b_values[i] << std::endl;
std::cout << " got: " << d_values[i] << std::endl;
ok = false;
break;
}
}
if(ok) std::cout << "Success" << std::endl;
ok = true;
for(int i = 0; i < rows*cols; ++i) {
const float diff = std::abs( e_values[i] - (a_values[i] * b_values[i]) );
if(diff > epsilon) {
std::cout << __FILE__ << ":" << __LINE__ << ": Failure (*):" << std::endl;
std::cout << " expected: " << a_values[i] * b_values[i] << std::endl;
std::cout << " got: " << e_values[i] << std::endl;
ok = false;
break;
}
}
if(ok) std::cout << "Success" << std::endl;
ok = true;
for(int i = 0; i < rows*cols; ++i) {
const float diff = std::abs( f_values[i] - (a_values[i] / b_values[i]) );
if(diff > epsilon) {
std::cout << __FILE__ << ":" << __LINE__ << ": Failure (/):" << std::endl;
std::cout << " expected: " << a_values[i] / b_values[i] << std::endl;
std::cout << " got: " << f_values[i] << std::endl;
ok = false;
break;
}
}
if(ok) std::cout << "Success" << std::endl;
}
return 0;
}